Single cell oil production by Trichosporon cutaneum from steam-exploded corn stover and its upgradation for production of long-chain α,ω-dicarboxylic acids

نویسندگان

  • Chen Zhao
  • Hao Fang
  • Shaolin Chen
چکیده

BACKGROUND Single cell oil (SCO) production from lignocelluloses by oleaginous microorganisms is still high in production cost, making the subsequent production of biofuels inviable economically in such an era of low oil prices. Therefore, how to upgrade the final products of lignocellulose-based bioprocess to more valuable ones is becoming a more and more important issue. RESULTS Differently sourced cellulases were compared in the enzymatic hydrolysis of the steam-exploded corn stover (SECS) and the cellulase from the mixed culture of Trichoderma reesei and Aspergillus niger was found to have the highest enzymatic hydrolysis yield 86.67 ± 4.06%. Three-stage enzymatic hydrolysis could greatly improve the efficiency of the enzymatic hydrolysis of SECS, achieving a yield of 74.24 ± 2.69% within 30 h. Different bioprocesses from SECS to SCO were compared and the bioprocess C with the three-stage enzymatic hydrolysis was the most efficient, producing 57.15 g dry cell biomass containing 31.80 g SCO from 327.63 g SECS. An efficient and comprehensive process from corn stover to long-chain α,ω-dicarboxylic acids (DCAs) was established by employing self-metathesis, capable of producing 6.02 g long-chain DCAs from 409.54 g corn stover and 6.02 g alkenes as byproducts. CONCLUSIONS On-site cellulase production by the mixed culture of T. reesei and A. niger is proven the most efficient in providing cellulase to the lignocellulose-based bioprocess. Three-stage enzymatic hydrolysis was found to have very good application value in SCO production by Trichosporon cutaneum from SECS. A whole process from corn stover to long-chain DCAs via a combination of biological and chemical approaches was successfully established and it is an enlightening example of the comprehensive utilization of agricultural wastes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Poultry Litter Biochar on Saccharomyces cerevisiae Growth and Ethanol Production from Steam-Exploded Poplar and Corn Stover

Effect of Poultry Litter Biochar on Saccharomyces cerevisiae Growth and Ethanol Production from Steam-exploded Poplar and Corn Stover

متن کامل

Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept

BACKGROUND Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment ar...

متن کامل

Designing and Creating a Synthetic Omega Oxidation Pathway in Saccharomyces cerevisiae Enables Production of Medium-Chain α, ω-Dicarboxylic Acids

Medium-chain (C8-C14) α, ω-dicarboxylic acids (α, ω-DCAs), which have numerous applications as raw materials for producing various commodities and polymers in chemical industry, are mainly produced from chemical or microbial conversion of petroleum-derived alkanes or plant-derived fatty acids at present. Recently, significant attention has been gained to microbial production of medium-chain α, ...

متن کامل

The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids.

Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermo...

متن کامل

Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum.

Simultaneous saccharification and fermentation (SSF) is the most commonly practiced operation in lignocellulose bioconversion to avoid the sugar product inhibition to cellulase enzymes. In this study, for the first time SSF was tested on microbial lipid fermentation using the diluted acid pretreated and biodetoxified corn stover. The results show that SSF was effective than the separate hydroly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017